
Towards an Application Framework for
Automated Planning and Scheduling

Alex Fukunaga, Gregg Rabideau,
 Steve Chien, David Yan

Jet Propulsion Laboratory, MS 525-3660
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109-8099

(818)306-6157
alex.fukunaga@jpl.nasa.gov, gregg.rabideau@jpl.nasa.gov,

steve.chien@jpl.nasa.gov, david.yan@jpl.nasa.gov

Abstract–A number of successful applications
of automated planning and scheduling
applications to spacecraft operations have
recently been reported in the literature.
However, these applications have been one-
of-a-kind applications that required a
substantial amount of development effort. In
this paper, we describe ASPEN, a modular,
reconfigurable application framework which
is capable of supporting a wide variety of
planning and scheduling applications. We
describe the architecture of ASPEN, as well as
a number of current spacecraft
control/operations applications in progress.

TABLE OF CONTENTS

1. INTRODUCTION

2. APPLICATION FRAMEWORKS

3. ASPEN: A FRAMEWORK FOR PLANNING

AND SCHEDULING

4. APPLICATIONS OF ASPEN
5. RELATED WORK

6. CONCLUSIONS AND FUTURE WORK

1. INTRODUCTION

Automated planning/scheduling technologies
have great promise in reducing operations cost
and increasing the autonomy of aerospace

systems. Planning1 is the selection and
sequencing of activities such that they achieve
one or more goals and satisfy a set of domain
constraints. Scheduling selects among
alternative plans and assigns resources and
times for each activity so that the assignments
obey the temporal restriction so activities and
the capacity limitations of a set of shared
resources. In addition, scheduling is an
optimization task in which metrics such as
tardiness and makespan are minimized.
Scheduling is a classical combinatorial
problem that has long been studied by
researchers in operations research. While
traditional OR approaches (c.f. [7]) have
focused on optimal solutions for highly
restricted classes of problems, there has been
much recent interest in the heuristic,
constraint-based approaches that are
applicable to practical domains.

Traditionally, the problems of planning and
scheduling have been studied separately.
Recently, approaches that integrate both the
planning and scheduling process together
under a unifying framework have been
developed. Some recent aerospace

1 We take these definitions of planning/scheduling
from [4].

applications of hybrid planner/schedulers
include [13,17, 16].

Although the benefits of applying
planning/scheduling technology can be
significant, developing real-world,
planning/scheduling systems is often an
extremely time-consuming task. Modeling a
complex domain requires an expressive
modeling language, as well as data structures
that represent the constraints expressed in the
domain model. In addition, complex, data
structures and algorithms that support
incremental modifications to candidate
plans/schedules need to be designed and
implemented.

In order to enable the rapid development of
automated scheduling systems for NASA
applications, we have developed ASPEN
(Automated Scheduling and Planning
ENvironment), a reusable, configurable,
generic planning/scheduling application
framework. An application framework [15] is
a class library (i.e., a reusable set of software
components) that provides the functionality of
the components found in prototypical
instances of a particular application domain.

ASPEN is an object-oriented system that
provides a reusable set of software
components that implements the elements
commonly found in complex
planning/scheduling systems. These include:
• An expressive constraint modeling

language to allow the user to naturally
define the application domain;

• A constraint management system for
representing and maintaining spacecraft
operability and resource constraints, as
well as activity requirements;

• A temporal reasoning system for
expressing and maintaining temporal
constraints; and

• A graphical interface for visualizing
plans/schedules (for use in mixed-

initiative systems in which the problem
solving process is interactive).

ASPEN is currently being utilized in the
development of an automated
planner/scheduler for commanding a naval
communications satellite, as well as a
scheduler for the ground maintenance for the
Reusable Launch Vehicle. In Section 2, we
discuss application frameworks, and their
applicability to planning/scheduling systems.
Section 3 describes the architecture of the
ASPEN. Section 4 describes some current
applications of the ASPEN framework,
including ground maintenance scheduling for
the Reusable Launch Vehicle, as well as
operations planning/scheduling for two
autonomous satellites. Finally, Section 5
describes related work.

2. APPLICATION FRAMEWORKS

Object-oriented software development
techniques make it possible to develop generic
applications for specific domains. These
application frameworks consist of a class
library forming a frame that has to be
customized for a specific application. The
concept of application frameworks was
pioneered in the domain of user interface
application frameworks such as ET++ [20] or
MacApp[21], which provide a reusable, blank
application that implements much of a given
user interface look-and-feel standard. For any
particular application, a programmer can
concentrate on implementing the application-
specific parts.

We first discuss some aspects of class libraries
before defining the term application
framework. Compared to conventional routine
libraries, class libraries are hierarchical, with
the most general class at the top of the
hierarchy tree (if single inheritance is used).
This hierarchical organization helps to reduce
the complexity of a library. An important

principle behind the design of a class
hierarchy is that the common behavior of
classes is factored out into their superclasses.

Classes which factor out common behavior of
other classes typically contain some methods
that cannot be implemented. Any class that
contains one or more “empty” methods (i.e.,
methods with some kind of dummy
implementation) is termed an abstract class. It
does not make sense to generate instances of
them. Nevertheless, abstract classes may also
contain methods that can already be
implemented in advance for all subclasses.

The most important aspect of abstract classes
is that they form the basis of extensible and
reusable software systems: it is possible to
realize whole software systems using only
abstract classes, i.e., the protocol supported by
them (we define the term “protocol of a class”
as all the methods and instance variables
provided by a class). If subclasses of abstract
classes are added to the class libary, these
software systems need not be changed. They
also work with the objects of new subclasses
of these abstract classes (on which other
software systems are based), since these
objects support at least the protocol (though
implemented in a specific manner) defined in
their (abstract) superclasses. The methods of
abstract classes are dynamically bound, so that
the corresponding methods of the objects
which are instances of the new classes are
called at run time.

New subclasses of abstract classes can reuse
all the code that was already implemented in
their superclasses. Class libraries are called
application frameworks if they apply the ideas
presented above in order to provide a software
system which is a generic application for a
specific domain. Classes comprising a
scheduling algorithm, together with all the
abstract classes it relies on, form a scheduling
application framework. Applications based on

such an application framework are built by
customizing its abstract and concrete classes.
Thus, a given framework already anticipates
much an application's design which is reused
in all applications based on the classes of that
application framework. This implies a
significant reduction in the amount of code
necessary to implement successive systems.

3. ASPEN: A FRAMEWORK FOR

PLANNING/SCHEDULING SYSTEMS

Note that the development of an application
framework for a particular domain implies a
standardized approach to implementing
systems for that domain, and a commitment
by the framework developer to support
applications that conform to that standardized
approach. It is impractical to develop a
framework to support all viable approaches to
planning and scheduling. Numerous, widely
divergent approaches to planning and
scheduling have been developed (cf. [1,23].
Since planning/scheduling are currently very
active areas of research, there is no clear
consensus on which approaches are most
useful. Thus, we restricted the scope of our
framework to approaches that had been found
useful for NASA applications in the past.

By analyzing our previous experience with
building planning/scheduling systems, (cf.
[16,17]), as well as requirements for current
and future applications, we abstracted a set of
requirements that is flexible enough to support
a wide range of applications. We found that
the requirements for an planning/scheduling
application framework included the following:

• A hierarchical representation of activities
• The ability to reason about: temporal

Relationships between activities
• Reasoning about resource usage
• Reasoning about arbitrary state attributes
• Reasoning dependencies between various

parameters of activities

• Flexible representation of time.
• Support for a wide range of search

algorithms
• A graphical user interface for viewing and

manipulating plans and schedules
interactively.

• A modeling language that is capable of
expressing the reasoning facilities listed
above, and a parser that translates user
models expressed in this language to the
system’s internal data structures.

Based on these requirements, we designed the
components described below.

Activity Database

The central data structure in ASPEN is an
activity. An activity represents an action or
step in a plan/schedule. An activity has a start
time, end time, and a duration. Activities can
use one or more resources. All activities in a
plan/schedule are elements of the Activity
Database (ADB), which maintains the state of
all of the activities in the current
plan/schedule, and serves as the integrating
module that provides an interface to all of the
other components.

One function of the ADB is to represent and
maintain hierarchical relationships between
activities. Activities can contain other
activities as subactivities; this facility can be
used to reason about the plan/schedule at
various levels of abstractions (e.g., a scheduler
can first reason about a set of activities
without considering that each of those
activities are themselves composed of a set of
subactivities –this can make various reasoning
tasks much more computationally tractable.

Temporal and resource-constraints between
activities are also represented in the ADB
Although most of the actual computational
mechanisms that maintain these constraints
are implemented in other the modules

described below, the functionality that
integrates constraints in the context of a
plan/schedule is implemented in the ADB. For
example, although the resource timelines are
responsible for detecting overuse of resources
by activities, the ADB maintains data
structures that indicate the assignment of
activities to specific timelines , so that one can
efficiently queries such as , “which resources
does this activity use?”

As another example: although the temporal
constraint network (see below) is responsible
for maintaining temporal constraints between
individual activities, the ADB is responsible
for global constraints. (e.g., the ADB contains
global constraints such as: “all activities occur
after the start of the scheduling horizon”;
when an activity is created, the temporal
constraint that the activity occurs after the
horizon is created automatically by the ADB.

Temporal Constraint Network

A Temporal Constraint Network (TCN) is a
graph data structure which represents
temporal constraints between activities. A
temporal constraint describes the temporal
relationship between an activity and other
activities and/or the scheduling horizon, and
impose an ordering on the set of activities.
The TCN implements a Simple Temporal
Problem, as defined in [3], and represents a
set of constraints, all of which must be
satisfied at any given time, i.e., it represents
the conjunct of all active constraints between
activities in the ADB. Activities are
represented in the TCN as pairs of time points,
where each time point corresponds to the
beginning or end of an activity, and the edges
in the TCN graph represent the constraints on
the temporal distance between the time points.
The TCN can be queried as to whether the
temporal constraints currently imposed
between the activities are consistent or not

(i.e., whether the current ordering is free of
cycles).

Resource Timelines

Resource Timelines are used to reason about
the usage of physical resources by activities.
Capacity conflicts are detected if the
aggregate usage of a resource exceeds its
capacity at any given time. Several subclasses
of resource timelines are implemented,
including depletable resource timelines used
to model consumable resources (e.g., fuel),
and non-depletable resources that are used to
model resources which are not actually
consumed by usage, but are instead “reserved”
for a period of time (e.g., a piece of
equipment). Our current model of resource
usage is discrete. That is, if we specify that an
activity such as move-forward uses 2 units of
fuel, then both of these units are modeled as
being immediately consumed at the beginning
of the activity. This is a discrete
approximation, since the usage of the fuel
may be better modeled as a linear function
such as usage(t) =t *2/(activitylength), where
t is the time elapsed since the beginning of the
activity, and activitylength is the duration of
the activity.

State Timelines

State timelines represent arbitrary attributes,
or states, that can change over time. Each
state can have several possible values; at any
given time, a state has exactly one of these
values. Activities can either change or use
states. For example, a door-open activity
would set the state of door to be open, while
an enter-building activity would require that
the state of door be open. As activities are
placed/moved in time, the state timeline
updates the values of the state, and detects
possible inconsistencies or conflicts that can
be introduced as a result. For example, an
activity that requires that the door be open is
placed at time t, then the state timeline checks

to verify that the door is in fact open at time t.
Otherwise, a state constraint violation is
indicated. Users can define legal sequences of
state transitions. The state timeline module
will detect illegal transition sequences if they
are introduced into the timeline.

For example, consider modeling a traffic light
with a state timeline, traffic-light. The
possible values are green, yellow, and red.
The legal state value transitions are: green to
yellow, yellow to red, red to green. All other
transitions are illegal.

Parameter Dependency Network

Each activity has a number of parameters, that
are either user-defined or computed by the
system, such as start time, end time, duration,
any resources it uses, any states it
changes/uses, etc. In ASPEN, it is possible to
create dependencies between parameters,
between pairs of parameters within the same
activity, or between pairs of parameters
defined in different parameters. A dependency
between two parameters p1 and p2 is defined
as a function from one parameter to another,
p1 = f(p2), where f(x) is an arbitrary function
whose input is the same type as p2, and whose
output has the type of p1. These dependencies
are represented and maintained in a Parameter
Dependency Network (PDN). The PDN
maintains all dependencies between
parameters, so that at any given time, all
dependency relations are satisfied. Note that if
there exists a dependency such that p1 = f(p2),
it’s inverse dependency, p2 = f--1(p1) does not
necessary exist, unless the user specifies the
inverse relationship and specifies the inverse
dependency as well.

Planning/Scheduling Algorithms

The search algorithm in a planning/scheduling
system searches for a valid, possibly near-
optimal plan/schedule.

The ASPEN framework has the flexibility to
support a wide range of scheduling
algorithms, including the two major classes of
AI scheduling algorithms: constructive and
repair-based algorithms.

Constructive algorithms (e.g., [4]
incrementally construct a valid schedule,
taking care that at every step, the partial
schedule constructed so far is valid When a
complete schedule is constructed, it is
therefore guaranteed to be valid. Repair-based
algorithms(cf. [12,22]) generate a possibly
invalid complete schedule using either random
or greedy techniques. Then, at every iteration,
the scheduled is analyzed, and repair
heuristics that attempt to eliminate conflicts in
the schedule are iteratively applied until a
valid schedule is found.

The search algorithms that have currently
been implemented include
• forward dispatch, a greedy, constructive

algorithm,
• IRS, a constructive, backtracking

algorithm based on [17]; and

• DCAPS, a repair-based algorithm based
on [16].

Graphical User Interface

The ASPEN Graphical User Interface (GUI)
component provides tools for graphically
displaying and manipulating schedules.
Resource and state timelines are displayed.
Activities are overlayed on the timelines, and
users can directly manipulate activities using
standard drag-and-drop procedures.

Extending ASPEN for Applications

There are two means by which ASPEN can be
extended and specialized for a particular
application. These are:
• Creation of domain-specific models using

the modeling language, and
• Extension of the application framework

code

The modeling language is used to specify
domain-specific constraints and activities.
Figure 1 shows an example of part of a

Activity prevalve_removal {
duration = 15
slot subsystem
after prevalve_prep with (subsystem == this.subsystem)
before prevalve_replace with (subsystem == this.subsystem)

Reservation hydraulic_lift_usage {
resource = hydraulic_lift;
usage = 1;
duration = 5;

}

requires state prevalve-purged TRUE
requires state prevalve-illuminated TRUE

}

Resource hydraulic_life {
type non-depletable
quantity 1

}
Figure 1. Sample of ASPEN modeling language (part of the Reusable Launch Vehicle
maintenance model). This describes an activity for removing the prevalve of an engine
subsystem.

domain model specified in the ASPEN
modeling language.

The base ASPEN framework, including the
modeling language is sufficiently extensible to
support a range of applications without any
extensions to the code of the framework itself
(e.g., the Reusable Launch Vehicle ground
maintenance scheduling application is directly
derived from the framework by simply
specifying a model file)

Extensions to the framework code needs to be
made when changes in the behavior of
ASPEN components are required. This
includes two classes of extensions:
epistemological and heuristic.2

Epistemological extensions are necessary
when new representational capabilities are in
order to model a new domain. For example, if
we wanted to implement a new type of
resource timeline which had a more
sophisticated, continuous model of resource
usage3, then a new subclass of the resource
timeline class would need to be implemented.
Heuristic extensions customize the behavior of
the framework so that the behavior is more
efficient for a particular domain.4 Examples of
heuristic extensions include new repair
heuristics for a repair-based scheduler, or an
entirely new search algorithms.

4. APPLICATIONS OF THE ASPEN SCHEDULING

SYSTEM

In this section, we describe ongoing
applications of the ASPEN scheduling system
to: generation of spacecraft command
sequences for the New Millennium Earth
Observing One satellite and the U.S. Navy
UHF Follow On One (UFO-1) satellite;

2 This classification follows [11]
3 Recall from Section 3 that we use a simple, discrete
resource usage model.
4 This implies that the framework is, in principle of
solving the problem without a heuristic extensions.

generation of mission operations sequences to
assist in design analysis for science and
operability; and rapid generation of plans for
maintenance and refurbishing for Highly
Reusable Space Transportation.

Spacecraft Commanding

The primary application area for the ASPEN
scheduling system is generation of spacecraft
command sequences from high level goal
specifications. In this role, automated
scheduling systems will encoding of complex
spacecraft operability constraints, flight rules,
spacecraft hardware models, science
experiment goals and operations procedures to
allow for automated generation of low level
spacecraft sequences by use of advanced
Artificial Intelligence planning and scheduling
technology. By automating this process and
encapsulating the operation specific
knowledge we hope to allow spacecraft
commanding by non-operations personnel,
hence allowing significant reductions in
mission operations workforce with the
eventual goal of allowing direct user
commanding (e.g., commanding by
scientists).

Current efforts in applying the ASPEN
scheduling system to spacecraft commanding
focus on two missions: the New Millennium
Earth Observing One (NM EO-1) satellite (to
be launched in late 1998) and the U.S. Navy
UHF Follow On One (UFO-1) satellite
(currently in orbit). NM EO-1 [10] is a earth
imaging satellite featuring an advanced multi-
spectral imaging device. For this mission,
operations consists of managing spacecraft
operability constraints (power, thermal,
pointing, buffers, consumables, engineering
downlinks, etc.) and science goals (imaging of
specific targets within particular observation
parameters). Of particular difficulty is
managing the downlinks as the amount of data

generated by the imaging device is quite large
and ground contacts are a limited resource.

Another ongoing effort in the area of
spacecraft commanding is the development of
an advanced commanding system for the U.S.
Navy UFO-1 satellite [19]. UFO-1 is an on-
orbit testbed managed by the U.S. Naval
Academy Space Artificial Intelligence Lab
(SAIL) at Annapolis In this collaboration,
SAIL is developing an uplink, downlink, basic
data transport, and commanding capability to
be interfaced with an advanced planning and
scheduling engine (ASPEN). In this
application, ASPEN will allow high level
commanding of the UFO-1 satellite to
perform high level functions such as: auto
pitch momentum dumping, preparation for
eclipse season, delta-V maneuvers, IRU
warmup and turnon, battery cell pressure bias
callibration, delta inclination maneuvers, and
other engineering housekeeping functions.
The ASPEN scheduling engine then performs
appropriate expansion and conflict resolution
to generate lower level command sequences to
achieve the higher level goals.

Design Evaluation

Another application of the ASPEN system is
in support of the Pluto Express (PX) project
for the dual purposes of science planning and
design evaluation for science and operability
[14]. In support of science planning, the we
are developing high level models of proposed
PX spacecraft to assist in automated
generation of science data acquisition plans
(e.g., high level activity sequences) from high
level science goals to assist in developing
science plans for mission profiling.

In a spin-off application of planning and
scheduling technology, this same capability to
generate science (and engineering) plans is
being used to evaluate candidate spacecraft
designs from the standpoint of emergent

design aspects such as science return and
operability. This spin-off arises from the
observation that often it is difficult to
determine how well a given spacecraft design
will perform without fleshing out approximate
operations sequences for critical phases of the
mission (e.g., encounter). In order to address
this difficulty, we are developing a design
analysis tool which accepts as input: a
candidate spacecraft design (and operations
constraints, models, etc.); a set of engineering
and science objectives; and a set of scoring
functions to assess how well a sequence
achieves the objectives. This tool then uses
planning and scheduling technology to
generate a candidate sequence; then uses the
scoring function to score this sequence in
terms of the aspects of science, operability,
etc. The end result is that the design team gets
quantitative feedback on how well the design
achieves science objectives and meets
operability constraints (such as meeting power
margins, etc.). This type of tool is targeted at
enabling design teams to rapidly and
impartially evaluate large numbers of
spacecraft designs with little effort, thus
allowing improved analysis of design
tradeoffs to enhance science and operations
concerns for future missions.

Maintenance Scheduling

The Highly Reusable Space Transportation
(HRST) program targets development of
technologies leading to highly reusable space
transportation systems which will provide
extremely low cost access to space [8,9]. As
part of this program, we have been developing
and demonstrating advanced scheduling
systems for the rapid generation and revision
of plans for maintenance and refurbishment of
highly reusable launch vehicles. In this
application, real-time telemetry downlinked
either during flight or immediately after flight
would be analyzed to automatically generate a
set of maintenance requests. These

maintenance requests would then be
transformed into a refurbishment plan by an
automated planning and scheduling system
which would account for available equipment
and resources as well as the intricacies of the
refurbishment procedures of the highly
complex propulsion systems. The end target is
to allow a turnaround of several days for the
HRST spacecraft to support a flight frequency
on the order of one flight per 1-2 weeks (as a
comparison, the space shuttle refurbishment
process takes approximately 65 days with a
flight frequency of once per 4 months). In the
maintenance schedule can be generated using
in-flight telemetry then the refurbishment
process can be speeded even further by
allowing for downlinking of requests for pre-
positioning of equipment and resources to
minimize schedule delay.

Once the actual maintenance plan has been
generated - the planning tool continues to be
of use in two ways. First, in many cases there
can be several mutually exclusive
maintenance activities which can be
performed next. Via lookahead and critical
path analysis automated scheduling software
can determine the next activities to enable the
minimal makespan (overall schedule
execution time). Second, as unexpected events
arise (such as equipment failures, resource
unavailabilities, and schedule slippage), the
automated scheduling software has the ability
to revise the schedule so as to minimize
schedule disruption (movement of activities
and resources from their original assignments)
and schedule slippage (delay of the
completion of the overall refurbishment.

In order to test and validate this technology
we have been utilizing test maintenance
procedures developed by Rockwell
International during the Phase 1 competition
of the Reusable Launch Vehicle Program
which ended in July 1996. Specifically, we
used the maintenance procedures developed

for the LO2 and LH2 propulsion systems for
the X-33 Reusable Launch Vehicle. The
procedures derived for maintaining and
refurbishing the test articles provided a rich
testbed for Space Propulsion System
Maintenance Scheduling. In all, the testbed
involved refurbishement of 2 major systems
with 16 subsystems, with a total of 576 lowest
level activities in a complete (every
subsystem) refurbishment plan. The model
that we developed for schedule generation
involved: 576 activity types, 6 resources, and
on average 6 state, resource, and precedence
constraints per activity. In this application we
allowed maintenance requests to request either
refurbishment of specific subsystems or major
systems. In order to schedule the maintenance
requests the ASPEN system used a forward
sweeping greedy dispatch algorithm which
used strong knowledge of the precedences of
activities in the plan. The resultant scheduler
has been able to generate schedules for
refurbishment problems involving half of the
subsystems (8 subsystems, 288 activities) in
approximately 10 minutes.

5. RELATED WORK

Recent reviews of planning and scheduling
can be found in [1,23]. [15] provides a
comprehensive treatment of application
frameworks.

DITOPS [18] is a recently developed
application framework for scheduling in the
domain of production management. The
differences between DITOPS and ASPEN are
the following:
• DITOPS is designed for production

management domain, while ASPEN is
designed for spacecraft operations
domains.

• DITOPS is a scheduling framework, while
ASPEN is a hybrid planning/scheduling
framework.

• DITOPS is commited to the paradigm of
repair-based scheduling; ASPEN is
uncommitted to either the repair-based or
constructive approaches.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have described ASPEN, a
reconfigurable, modular framework for
planning/scheduling applications, and
described three current applications of
ASPEN in spacecraft operations. Although the
development of a generic software
architecture such as ASPEN has required a
substantial, initial investment of effort, we
expect the total development effort for a set of
scheduling applications to be significantly
decreased (as compared to individually
developing each of the applications).

ASPEN is currently a scheduling-oriented
system, although some planning capabilities
are supported for hybrid planning/scheduling
applications such as the EO-1 and UFO-1. We
plan to extend ASPEN to support additional
planning capabilities. Currently, ASPEN
already supports much of the functionality of
state of classical planning systems [1]. We
plan to extend ASPEN’s planning capabilities
so that it can be used as a framework for
powerful planning applications that also
exploit the additional temporal reasoning and
resource management capabilities which are
available through ASPEN’s scheduling-
oriented facilities.

Finally, the reconfigurability of ASPEN could
be taken a step further. Currently, it is not
possible to reconfigure ASPEN at runtime.
Implementing the ability to be reconfigured at
runtime would enable the interesting
possibility of using adaptive problem solving
techniques to automate the reconfiguration
process for particular classes of problems (c.f.
[6] or for partiular problem instances (c.f.
[5]).

ACKNOWLEDGMENTS

This work was performed by the Jet Propulsion
Laboratory, California Institute of Technology, under
contract to the National Aeronautics and Space
Administration.

REFERENCES

[1] J. Allen, J. Hendler, A. Tate, Readings in
Planning, Morgan Kaufmann, 1990.

[2] M. Deale, M. Yvanovich, D. Schnitzius, D. Kautz,
M. Carpenter, M. Zweben, G. Davis, B. Daun, “The
Space Shuttle Ground Processing System,” in Zweben
M., Fox M., ed., Intelligent Scheduling, Morgan
Kaufman, 1994.

[3] R. Dechter, I. Meiri, J. Pearl, “Temporal constraint
networks,” Artificial Intelligence (49)61-95, 1991.

[4] M. Fox, “ISIS: a retrospective,” in M. Zweben and
M. Fox, eds., Intelligent Scheduling, Morgan
Kauffman, 1994.

[5] A. Fukunaga, S. Chien, D. Mutz, R. Sherwood, A.
Stechert, “Automating the process of spacecraft design
optimization,” to appear in Proceedings of IEEE
Aerospace, 1997.

[6] J. Gratch, S. Chien, “Adaptive problem-solving for
large-scale scheduling problems: a case study”,
Journal of Artificial Intelligence Research, (4)365-
396, 1996.

[7] S. Graves, “A Review of Production Scheduling,”
Operations Research, 29(4):646-675, 1981.

[8] Proceedings of the 1995 Technical Interchange
Meeting on Highly Reusable Space Transportation,
Huntsville, AL, July 1995.

[9] Proceedings of the 1996 Technical Interchange
Meeting on Highly Reusable Space Transportation,
Huntsville, AL, August 1996.

[10] Landsat-7 Mission Operations Concept
Document, Mission Operations and Data Systems
Directorate, Goddard Space Flight Center, Greenbelt,
MD, 1996.

[11] J. McCarthy, P. Hayes “Some philosophical
problems from the standpoint of artificial

intelligence.” In B. Meltzer and D. Mitchie (eds),
Machine Intelligence 4, pp.463-502, Edinburgh
University Press, 1969.

[12] S. Minton, M. Johnston., A. Philips, P. Laird,
“Minimizing Conflicts: A heuristic repair method for
constraint satisfaction and scheduling problems,”
Artificial Intelligence, (58)161-205, 1988.

[13] N. Muscettola, “HSTS: Integrating Planning and
Scheduling,” in M. Zweben, M. Fox, ed., Intelligent
Scheduling, Morgan Kaufman, 1994.

[14] Pluto Express FY96 Annual Report, September
1996.

[15] W. Pree, Design patterns for object-oriented
software development. ACM Press, 1995.

[16] G. Rabideau, S. Chien, T. Mann, J. Willis, S.
Siewert, P. Stone, “Interactive, Repair-Based Planning
and Scheduling for Shuttle Payload Operations,” to
appear in Proc. IEEE Aerospace Conf., 1997.

[17] B. Smith., S. Chien, G. Rabideau, D. Yan, N.
Muscettola., C. Fry, S. Mohan, “On-Board Planning
for New Millennium Deep Space One Autonomy,” to
appear in Proc. IEEE Aerospace Conf. 1997

[18] S.F. Smith, O. Lassila “Configurable systems for
reactive production management,” in E. Szelke, R.
Kerr, eds., Knowledge-Based Reactive Scheduling,
International Federation of Information Processing
(IFIP) Transactions B-15, 1994.

[19] Ultra High Frequency Follow On
Communications Satellite System Fact Sheet,
http://www.fafb.af.mil/uhf/fact_sheet.html.

[20] A. Weinland, E. Gamma, R. Marty, “ET++ - An
Object-Oriented Application Framework in C++.” in
OOPSLA’88, Special Issue of SIGPLAN Notices;
23(11):46-57, 1988.

[21] D. Wilson, L. Rosenstein, D. Shafer
Programming with MacApp, Addison-Wesley, 1990.

[22] M. Zweben, B. Daun, E. Davis, M. Deale,
“Scheduling and Rescheduling with Iterative Repair,”
in M. Zweben, M. Fox, ed., Intelligent Scheduling,
Morgan kaufman, 1994.

[23] M. Zweben, M. Fox, eds. Intelligent Scheduling.
Morgan Kaufmann, 1994.

Alex S. Fukunaga is a
Member of the Technical
Staff in the Artificial
Intelligence Group at the
Jet Propulsion
Laboratory, California
Institute of Technology.
He holds an A.B. in
Computer Science from Harvard University,
and a M.S. in Computer Science from the
University of California at Los Angeles, where
he is currently a Ph.D. student. His research
interests include optimization, decision theory,
search, machine learning, and automated
planning/scheduling,

Gregg Rabideau is a
Member of the Technical
Staff in the Artificial
Intelligence Group at the
Jet Propulsion
Laboratory, California
Institute of Technology.
His main focus is in
research and development of planning and
scheduling systems for automated spacecraft
commanding. Other projects include planning
and scheduling for the first deep space
mission of NASA’s New Millinium Program,
and for spacecraft design of the Pluto Express
project. Gregg holds a B.S. and M.S. degree
in Computer Science from the University of
Illinois where he specialized in Artificial
Intelligence.

Steve Chien is Technical
Group Supervisor of the
Artificial Intelligence
Group of the Jet
Propulsion Laboratory,
California Institute of
Technology where he
leads efforts in research
and development of automated planning and

Title: fukunaga.eps
Creator: imconv
CreationDate: Thu Oct 10 14:09:57 1996

scheduling systems. He is also an adjunct
assistant professor in the Department of
Computer Science at the University of
Southern California. He holds a B.S., M.S.,
and Ph.D. in Computer Science from the
University of Illinois. His research interests
are in the areas of: planning and scheduling,
operations research, and machine learning.

David S. Yan is a
Member of the Technical
Staff in the Artificial
Intelligence Group at the
Jet Propulsion
Laboratory, California
Institute of Technology.
He holds a B.S. in
Electrical Engineering
and Computer Science
from the University of California at Berkeley.
He will be pursuing his M.S. degree in
Computer Science at Stanford University. His
research interests include automated
planning/scheduling, operating systems,
computer architecture and computer networks.

Title: yan.eps
Creator: /tools/imto
CreationDate: Fri O

